Modeling and Analysis of Two-Way Relay Non-Orthogonal Multiple Access Systems
نویسندگان
چکیده
A two-way relay non-orthogonal multiple access (TWR-NOMA) system is investigated, where two groups of NOMA users exchange messages with the aid of one half-duplex (HD) decode-and-forward (DF) relay. Since the signal-plusinterference-to-noise ratios (SINRs) of NOMA signals mainly depend on effective successive interference cancellation (SIC) schemes, imperfect SIC (ipSIC) and perfect SIC (pSIC) are taken into account. In order to characterize the performance of TWR-NOMA systems, we first derive closed-form expressions for both exact and asymptotic outage probabilities of NOMA users’ signals with ipSIC/pSIC. Based on the derived results, the diversity order and throughput of the system are examined. Then we study the ergodic rates of users’ signals by providing the asymptotic analysis in high SNR regimes. Lastly, numerical simulations are provided to verify the analytical results and show that: 1) TWR-NOMA is superior to TWR-OMA in terms of outage probability in low SNR regimes; 2) Due to the impact of interference signal (IS) at the relay, error floors and throughput ceilings exist in outage probabilities and ergodic rates for TWRNOMA, respectively; and 3) In delay-limited transmission mode, TWR-NOMA with ipSIC and pSIC have almost the same energy efficiency. However, in delay-tolerant transmission mode, TWRNOMA with pSIC is capable of achieving larger energy efficiency compared to TWR-NOMA with ipSIC.
منابع مشابه
Bounds for Multiple-Access Relay Channels with Feedback via Two-way Relay Channel
In this study, we introduce a new two-way relay channel and obtain an inner bound and an outer bound for the discrete and memoryless multiple access relay channels with receiver-source feedback via two-way relay channel in which end nodes exchange signals by a relay node. And we extend these results to the Gaussian case. By numerical computing, we show that our inner bound is the same with o...
متن کاملExtension of the Coverage Region of Multiple Access Channels by Using a Relay
From practical and theoretical viewpoints, performance analysis of communication systems by using information-theoretic results is important. In this paper, based on our previous work on Multiple Access Channel (MAC) and Multiple Access Relay Channel (MARC), we analyze the impact of a relay on the fundamental wireless communications concept, i.e., coverage region of MARC, as a basic model for u...
متن کاملA Fair Power Allocation for Non-Orthogonal Multiple Access in the Power Domain
This paper presents an investigation on the performance of the Non-Orthogonal Multiple Access (NOMA) in the power domain scheme. A Power Allocation (PA) method is proposed from NOMA throughput expression analysis. This method aims to provide fair opportunities for users to improve their performance. Thus, NOMA users can achieve rates higher than, or equal to, the rates obtained with the convent...
متن کاملPerformance Analysis of Relay Assisted Cooperative Non-Orthogonal Multiple Access Systems
Non-orthogonal multiple access (NOMA) is a promising multiple access technique for the fifth generation (5G) wireless communications. In order to enhance the performance gains of NOMA systems, a relay assisted cooperative NOMA scheme is designed in this paper. In the proposed scheme, the concept of NOMA is exploited to realize the transmission of the source information in the second time slot. ...
متن کاملNon-Orthogonal Multiple Access Schemes with Partial Relay Selection
In this paper, non-orthogonal multiple access (NOMA) in amplify-and-forward relay systems with partial relay selection (PRS) is investigated. More specifically, new exact closed-form expressions for the outage probabilities at two users are derived, based on which an asymptotic analysis at high signalto-noise ratio (SNR) is carried out. Additionally, in order to investigate the performance gap ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018